일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 프로세스
- 스택
- 컨테이너
- APOLLO
- 연결 리스트
- 배열
- 이진탐색
- cors
- C
- 프론트엔드
- 큐
- 자료구조
- 해시테이블
- pytorch
- 포인터
- 자바스크립트
- alexnet
- 웹팩
- 알고리즘
- 연결리스트
- 브라우저
- 코딩테스트
- 타입스크립트
- RxJS
- RT scheduling
- vue3
- GraphQL
- Machine Learning
- 프로그래머스
- 릿코드
- Today
- Total
목록alexnet (3)
프린세스 다이어리
1. import libraries import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers, regularizers 2. Load and preprocess CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 num_train = int(len(train_images) * 0.8) train_images, validation_images = t..
PyTorch model code based on "ImageNet Classification with Deep Convolutional Neural Networks" paper 1. Library import import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from tqdm import tqdm 2. AlexNet Network class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.C..
ImageNet Classification with Deep Convolutional Neural Networks 알렉스넷(AlexNet)으로 유명한 CNN 네트워크를 소개한 논문입니다. 1. Introduction This paper presents the AlexNet architecture, which uses a combination of convolutional and fully-connected layers to effectively classify images. Prior to the development of this neural network, deep learning faced challenges due to insufficient datasets and computing resourc..