일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 자바스크립트
- 릿코드
- 큐
- 연결 리스트
- RT scheduling
- 타입스크립트
- 배열
- 포인터
- 자료구조
- 프로그래머스
- 해시테이블
- C
- 연결리스트
- APOLLO
- 알고리즘
- pytorch
- cors
- 프로세스
- 스택
- alexnet
- 코딩테스트
- 브라우저
- RxJS
- GraphQL
- vue3
- 이진탐색
- 프론트엔드
- 웹팩
- 컨테이너
- Machine Learning
- Today
- Total
목록구현 (2)
프린세스 다이어리
1. import libraries import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers, regularizers 2. Load and preprocess CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 num_train = int(len(train_images) * 0.8) train_images, validation_images = t..
PyTorch model code based on "ImageNet Classification with Deep Convolutional Neural Networks" paper 1. Library import import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from tqdm import tqdm 2. AlexNet Network class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.C..