일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- alexnet
- C
- 프론트엔드
- RxJS
- 자바스크립트
- vue3
- 브라우저
- 연결리스트
- 프로그래머스
- 타입스크립트
- 해시테이블
- 웹팩
- GraphQL
- cors
- Machine Learning
- 알고리즘
- 연결 리스트
- 스택
- RT scheduling
- APOLLO
- 릿코드
- 배열
- 코딩테스트
- 이진탐색
- 큐
- 포인터
- 컨테이너
- 자료구조
- pytorch
- 프로세스
- Today
- Total
목록colab (2)
프린세스 다이어리
1. import libraries import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers, regularizers 2. Load and preprocess CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 num_train = int(len(train_images) * 0.8) train_images, validation_images = t..
PyTorch model code based on "ImageNet Classification with Deep Convolutional Neural Networks" paper 1. Library import import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from tqdm import tqdm 2. AlexNet Network class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.C..