일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 배열
- 연결 리스트
- 타입스크립트
- alexnet
- RxJS
- 웹팩
- 알고리즘
- cors
- 연결리스트
- RT scheduling
- 해시테이블
- GraphQL
- 릿코드
- APOLLO
- 큐
- 포인터
- 코딩테스트
- pytorch
- 자바스크립트
- 컨테이너
- vue3
- 프로세스
- C
- 프론트엔드
- 자료구조
- 스택
- 이진탐색
- 프로그래머스
- Machine Learning
- 브라우저
- Today
- Total
목록colab (2)
프린세스 다이어리
1. import libraries import tensorflow as tf from tensorflow.keras import datasets, layers, models, optimizers, regularizers 2. Load and preprocess CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 num_train = int(len(train_images) * 0.8) train_images, validation_images = t..
PyTorch model code based on "ImageNet Classification with Deep Convolutional Neural Networks" paper 1. Library import import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from tqdm import tqdm 2. AlexNet Network class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.C..